在现代医学的舞台上,基因编辑技术正在崭露头角,特别是CRISPR技术。这项技术不仅颠覆了传统的治疗方法,还承诺为人类健康带来前所未有的变革。那么,CRISPR究竟是什么?它的安全性如何?它又将如何改变我们的生活?让我们一起深入探讨这个令人兴奋的领域。 想象一下,科学家们不仅可以修复我们身体内缺陷的基因,还能通过精准的基因修改来治疗各种疾病。这听起来像是科幻电影中的情节,但基因编辑技术正逐步走向现实 ...
该工作系统研究了AsCas12f1及其改进型突变体对靶DNA切割过程的动力学分子机制。研究发现,AsCas12f1解旋原间隔区内DNA后,在非靶链DNA上产生缺口(nick)并进行双向外切模式的核酸降解;随后,AsCas12f1把DNA解旋范围扩展到 ...
近年来,科学家们创造了一系列基于CRISPR-Cas技术的新方法,用于精确编辑生物体的遗传物质。其中一个应用是细胞疗法:可以对患者的免疫细胞进行特异性的重新编程,从而更有效地对抗癌症。 苏黎世联邦理工学院生物系统科学与工程系的研究人员现在发现了这些新型CRISPR-Cas方法的进一步应用:由联邦理工学院教授Randall Platt领导的研究人员正在使用它们来破译细胞基因组突变如何影响其功能。例如 ...
【导读】 就在刚刚,AI设计DNA、RNA和蛋白质序列的能力再获得颠覆性突破,研究登上Science封面。Evo模型能以无与伦比的准确性,解码和设计从分子到基因组规模的对象了,合成生物学的工作方式,从此或将彻底颠覆。
在对与人类具有相同缺陷的免疫细胞进行的细胞培养实验中,研究人员利用CRISPR基因编辑技术在基因的正确位置成功插入了缺失的字母。然而,苏黎世大学表示,修复工作涉及到的整组染色体片段随后都缺失了。
Alexis Komor博士目前担任UCSD的助理教授。在她的博士后研究期间 ,Komor博士成功开发了首个碱基编辑器,这一创新成果在2016年发表于《自然》杂志。自那以后,碱基编辑技术逐渐被应用于临床研究。例如,Beam ...
人工智能基础模型的出现,为生物序列建模指明了一条有前景的道路,但尚未实现全基因组水平的建模。DNA序列非常长,例如我们人类有着30亿碱基对,简单如大肠杆菌也有这数百万碱基对。要想充分理解进化的影响,需要具有单个核苷酸分辨率的分辨率,这些问题使得大规模 ...
巴塞尔苏黎世联邦理工学院的研究人员报告说,他们已经使用CRISPR-Cas技术破译了细胞基因组突变如何影响其功能。通过他们的新方法,研究人员可以在培养皿中产生数千个具有不同基因变异的细胞,并确定哪些变异会导致癌症的发展。
惠达基因治疗公司(HuidaGene Therapeutics,以下简称“惠达基因”)是一家全球临床阶段的基因组药物开发生物技术公司,宣布美国 FDA 已批准其用于治疗新生血管性年龄相关性黄斑变性 (nAMD) 的 HG202 新药临床试验 (IND ...
CRISPR相关蛋白(Cas)在crRNA的引导下,通过识别原间隔区相邻基序(PAM)来切割靶标核酸。然而,CRISPR-Cas系统对PAM的依赖性以及脱靶效应不仅限制了 ...
为了解决CRISPR-Cas基因组编辑中的一个根本性局限,研究人员研发了新型的经设计的Cas9变体,后者几乎消除了对一个被称为PAM的原间隔序列相邻基序 ...